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Lecture overview
• Transfer functions

• Modal motion in free vibration
• Eigenvalues

• Eigenvectors



Transfer Functions
• Transfer functions relate input to 

output
• The roots/poles of the characteristic 

equation determine frequency and 
damping of each mode i.e. the 
dynamics of the system
• In state space form additional 

information is also available 
describing mode shapes from the A 
matrix



Simple Example
• Using the simple suspension example from Section 2b 

• Assume zero initial conditions
• Take Laplace transform
• Write transfer function
• Enter parameter values

• The roots of the characteristic equation in this 
example are;

−1.875 ± 6.372𝑖

• The nature of the roots e.g. complex, repeated, 
distinct and real determine the general solution 
approach. They also define the dynamics of the 
system.



Laplace Transform and the Transfer 
Function
• State space representation;

𝒙
.
= 𝐴𝒙 + 𝐵𝒖  [1] 

𝒚 = 𝐶𝒙 + 𝐷𝒖  [2]

• Assuming zero initial conditions and taking the Laplace transform of [1];

𝑠𝑋 = 𝐴𝑋 + 𝐵𝑈

(𝑠𝐼 − 𝐴)𝑋 = 𝐵𝑈

𝑋 = 𝑠𝐼 − 𝐴 "#𝐵𝑈

•  Substituting into [2];
𝑌 = 𝐶 𝑠𝐼 − 𝐴 "#𝐵𝑈 + 𝐷𝑈

𝐻(𝑠) = 𝐶 𝑠𝐼 − 𝐴 "#𝐵 + 𝐷  [3]



Laplace Transform and the Transfer 
Function
• Equation [3] provides a general solution in terms of the transfer function, 
𝐻 𝑠  and is an alternate form to the State Space Representation.
• Comparing the denominator of [3] 𝑠𝐼 − 𝐴  with the definition for the 

eigenvalues;
𝐴𝑣 = 𝜆𝑣  [4]

• It can be shown that the transfer function poles are the roots of the 
Characteristic Equation and the eigenvalues of A
• The eigenvalues of A can found by calculating det 𝐴 − 𝜆𝐼 = 0
• Matrix 𝐴 governs the fundamental modes of vibration i.e. how the system 

will freely vibrate as it settles after some initial disturbance (not the 
inputs).

Eigenvectors of A Eigenvalues of A
The eigenvalues therefore tell us about the 

damping and natural frequency of each mode of 
the system 



worked example (reminder)



𝑀!�̈�! = 𝐹 − 𝑘 𝑧! − 𝑧" − 𝑏(�̇�! − �̇�")

𝑀"�̈�" = 𝑘 𝑧! − 𝑧" + 𝑏 �̇�! − �̇�" − 𝑘𝑧" − 𝑏�̇�"

An Example

• The equations of the system are (expressed in terms of two second 
order differential equations);



Choosing one deflection and one velocity state per mass;

  



Modal motion in free vibration – Eigenvalues
• The vector of deflections only, 𝒛(𝒕) = 𝑥!	 𝑥" # for our example may be written as a linear combination;

𝒛(𝒕) = 𝑅𝑒 𝒖!𝑒$$% + 𝒖"𝑒$%%

where each term 𝒖𝒊𝑒$&% represents a single vibrational mode, 𝒖'  are complex constants [2x1 vector in this 
example], 𝜆'  are complex scalars and max 𝑖 = 𝑛 with 𝑛 being the number of states.
• Evaluating a single term in the above, split 𝜆'  into real and imaginary parts;

 𝜆' = 𝜎 + 𝑏𝑖

• Using the above and Euler’s formula we can better evaluate what is happening;

𝒖'𝑒$&% = 𝒖'𝑒 ()*' % = 𝒖'𝑒(%𝑒'*%

𝒖'𝑒$&% = 𝒖'𝑒(% cos 𝑏𝑡 + 𝑖 sin 𝑏𝑡   [5]



Modal motion in free vibration - Eigenvalues
• From [5], 𝜎 should be -ve bounding the response to a decaying 

exponential, 𝑏 gives the frequency of the sinusoidal component, 𝑢!  
(complex) determines the magnitude and the relative phase of each 
mode.

Modal decomposition of response
Solid line = total response
Short dash = sinusoidal component
Long dash = exponential decay



Modal motion in free vibration – Eigenvalues

• Eigenvalues appear in (complex conjugate) pairs and can be written;

𝜆",$ = 𝜎 ± 𝑗𝜔%

where 𝜎 is the modal damping factor and 𝜔% is the damped natural 
frequency.



Check for yourself

• Use the eig() function in MATLAB to determine the eigenvalues of 
matrix A from the previous example.
• How are the complex conjugate pairs placed within the resulting 

vector?



Check for yourself

𝜆!," = 𝜎 ± 𝑗𝜔,



Modal motion in free vibration –
Eigenvalues
• From the eigenvalues it is possible to tell
• Damped natural frequency, 𝜔?
• Natural frequency [Hz], 𝜔@/2𝜋
• Damping factor, 𝜎
• Damping ratio, 𝜁 = cos 𝜃
• Settling time (within 2%), 𝑇A =

B
C

• Percent overshoot, 100𝑒
!"#
$!#%

• Note: 𝜆 = 0 corresponds to the steady-state 
response of the system (not dynamics)  



Check for yourself

• Using the previous example find the eigenvalues of the system and 
hence determine;
• Damped natural frequency, 𝜔?
• Natural frequency [Hz], 𝜔@/2𝜋
• Damping factor, 𝜎
• Damping ratio, 𝜁 = cos 𝜃
• Settling time (within 2%), 𝑇A =

B
C

• Percent overshoot, 100𝑒
!"#
$!#%



Modal motion in free vibration – Eigenvectors
• Eigenvectors can show the magnitudes at which the states vibrate in 

relation to one another.
• Writing eigenvalues and eigenvectors together in matrix form;

𝑨𝑽 = 𝑽𝑫
where;

 𝑽 =
𝑢" 𝑢! ⋯ 𝑢@
𝜆"𝑢" 𝜆!𝑢! ⋯ 𝜆@𝑢@

 and 𝑫 =

𝜆"
𝜆!

⋱
𝜆@



Modal motion in free vibration –
Eigenvectors
• Using MATLAB ‘eig(A)’ to find the eigenvectors of the example system, A 

matrix;

• Note
• The second and fourth columns are the complex conjugates of the first and third 

columns respectively
• Rows three and four are the first and second rows multiplied by their respective 

eigenvalues
• The system can then be characterized by considerably less ‘unique information’

x xx x



Modal motion in free vibration –
Eigenvectors
• Dividing through by the 

largest magnitude 
eigenvector (−0.0284 −
0.017𝑖) to normalize the 
eigenvectors.
• Plot the eigenvector 

components (first mode)
• The relative magnitude 

and phase is seen on the 
two plots

Mode 1



Modal motion in free vibration –
Eigenvectors
• Similarly for the second 

(non-conjugate) mode 
of interest
• The relative magnitude 

and phase is seen on 
the two plots
• Note the differences 

between first and 
second modes of 
vibration

Mode 2



Conclusions

• Transfer function vs state space representation
• Eigenvalues tell us;
• Damped natural frequency
• Natural frequency 
• Damping factor
• Damping ratio
• Settling time
• Percent overshoot

• Eigenvectors help us to understand vibration of the modes 
relative to one another 


